AP Statistics The top 10 phrases that pay

Bracketed words/phrases indicate that a choice of one of them is needed Underlined words/phrases indicate that context is needed (substitute the actual variable(s) from the problem)

Phrases 1 - 5 : linear regression

- \bigcirc correlation between 2 quantitative variables (r):
- "There is a [weak/moderate/strong] [positive/negative] linear relationship between explanatory variable and response variable."
- 2 slope of the LSRL (b):
- " For every 1 <u>unit</u> increase in the <u>explanatory variable</u>, our model predicts an average increase of \underline{b} <u>units</u> in the <u>response variable</u>."
- 3 y-intercept of the LSRL (a):
- "If <u>explanatory variable</u> = 0 <u>units</u>, this model predicts a <u>response variable</u> value of <u>a</u> <u>units</u>." (be prepared to comment on whether this value makes any sense)
- 4 standard deviation of residuals (s):
- "If we use this model to predict the values of <u>response variable</u> from <u>explanatory</u> <u>variable</u>, our predictions will typically be off by about \underline{s} <u>units</u>.
- \odot coefficient of determination (r^2):
- " $\underline{r^2}$ percent of the variation in <u>response variable</u> can be accounted for by/explained by the linear model with $x = \underline{\text{explanatory variable}}$."

Phrases 6 - 7 : confidence intervals

- 6 confidence interval:
- "I am <u>confidence level</u>% confident that the true [proportion / mean /difference of proportions/ difference of means/ slope]

[in context] is between lower bound and upper bound."

- or -

"I am <u>confidence level</u>% confident that the interval from <u>lower bound</u> to <u>upper bound</u> captures the true [proportion / mean /difference of proportions/ difference of means/ slope] [in context]."

7 confidence level:

"If the [random sampling / random assignment] were repeated many times, about confidence level% of the resulting confidence intervals would contain the true [proportion / mean /difference of proportions/ difference of means/ slope] [in context]."

Phrases 8 - 10: significance tests

8 meaning of the *p-value*:

"There is a $\underline{p\text{-value}}\%$ probability of getting a result as extreme or more extreme than the one observed if the null hypothesis is true."

9 decision in a significance test:

"Since the p-value of $\underline{p\text{-value}}$ is [less than / greater than] α = significance level, [reject / fail to reject] H_0 . We [have / don't have] convincing evidence that the alternative hypothesis in context."

10 Type I and Type II errors:

"The probability of avoiding a Type II error is <u>power</u> when the true [proportion / mean /difference of proportions/ difference of means/ slope] [in context] is _____."