Algebra 1: Unit 6, lesson 6, Notes: Slopes of parallel/perpendicular lines, graphing linear inequalities

Part 1: Introduction: The sports boosters club is selling t-shirts and blankets at the football games to afford the charter

busses that the team uses when traveling. T-shirts cost \$10 and blankets cost \$25.

The booster club has set a goal of making \$2000 at each home game.

How many T-shirts and blankets does the club need to sell in order to meet their goal?

- a. Let x = \$ 0F 7-540035
 - a. Write an expression for the amount of money raised from T-shirt sales: 10x
- b. Let y = # OF BUMNYETS
 - a. Write an expression for the amount of money raised from blanket sales: 25y
- Write an equation that represents the sales goal:

10x + 25y = 2000

Determine if the club will meet their goal if they sell 50 T-shirts and 50 blankets. Explain.

NOPE & 750 SHORT!

50 (10) + 50 (25) 500 + 1250

- Calculate two additional ordered pairs which would be solutions.
- Label the axes and graph the equation (use the ordered pairs or rewrite part c in function form).

Sitini	BLANKET
X	У
[00	40
200	0
0	80

10x + 25y	-
50(10) + 2 0 (75 500 + 500	ين (د)

10x + 25y = 1,000 $10(100) + 25(0) = 1000 \checkmark$

So how many T-shirts and blankets does the club need to sell in order to meet their goal?

CULTIPLE COMBINATIONS OF

Part 2

- At the away games, the club has a goal of earning \$1000. Create an equation that represents this goal.
- b. On the same coordinate plane as above in a different color, graph this equation.

 C. Write each = 500
- c. Write each of the equations in function form:

Function 1: $(0x + 25y = 2000 - 10x \rightarrow \frac{15y}{25} = \frac{-10x}{25} + \frac{1000}{25} \rightarrow \frac{10x}{25} + \frac{1$

Function 2:

 $\frac{10x + 25y = 1000}{-10x} \rightarrow \frac{25y}{25} = \frac{-10x}{25} + \frac{1000}{25} \rightarrow \boxed{y = -\frac{2}{5}x + 40}$

What do you notice about these equations?

Same Slope

Parallel Lines: Two lines are parallel if

- THEY HAVE THE SAME SLOPE (different yintercepts)
- They will Never (ever) intersect

Perpendicular Lines: Two lines are perpendicular if THEY INTERSELT AT A 90° ANGLE.

- · SLOPES ARE OPPOSITE RELIPPORALS

Identify the kinds of lines you see in the image. LX:

If M, = 7., so perpendicular line will have

if M, = 7., so perpendicular line will have

a slope of = = m2

Example 1: Determine whether the graphs of each pair of equations are parallel, perpendicular, or neither. Explain your reasoning. Then, graph the equations to justify your response.

Get in function form

-2x + 4y = 4 to compare slopes

 $3x - 6y = -24 \begin{vmatrix} 3x + 6y = 6 \\ -3x \end{vmatrix} - 3x$

PERPENDICULAR LINES _

Example 2: Find the slope of the line perpendicular to the equation of the line given; then, find the slope of line that is parallel to the graph.

a. $y = \frac{3}{2}x + 7$ b. 4x + y = 2Perpendicular: $M = -\frac{3}{3}$ Parallel: $M = \frac{3}{4}$

Part 3: The sports boosters club is selling t-shirts and blankets at the football games to afford the charter busses that the team uses when traveling. T-shirts cost \$10 and blankets cost \$25.

The booster club has set a goal of making at least \$2000 at each home game.

How many T-shirts and blankets does the club need to sell in order to meet their goal?

- a. Compare the set up to part 1 to the set up of part 3.
- b. How would this be represented algebraically? Do so. $10 \times 4 \times 25 \times 10^{-25} = 2000$
- c. Recreate the graph from the previous page.
 d. Identify four ordered pairs that are solutions to the inequality (they have to make a minimal sum of

		V.
X	У	Calculations that justify it's a solution.
0	120	10(0)+25(120) ≥ 2000 3000 ≥ 2000 ×
200	(0)	10(200) + 25(0) \(\geq 2000 \)
100	60	10 (100) + 25 (60) 1000 + 1500 = 2000
200	200	10(200) + 25(200)

2000).

e. Are the points that you identified on the graph the only solutions that make this inequality true? How many solutions are there?

Infinite/

Graphing a two-variable linear inequality on a coordinate plane is similar to graphing a two-variable linear equation on a coordinate plane, except...

Depending on the inequality symbol, the region that represents the solutions....

How to graph a linear inequality in two variables:

- 1. If necessary, rewrite the inequality in Function Form. y=_
- 2. Identify the SLOPE and 4- NTENCEPT.
- 3. Plot the points for the boundary line.
- 4. According to the NXQ. connect points with a DASHED or 50LTO line.
- 5. Shade the Solution region. shade above < shade below

b. $3x + y \le 7$

Examples: Graph the following inequalities.

2. $y \ge -3x + 2$

3. x > 4

v	9	9	- 5
У	-	4	- 5

Exit Ticket: Compare $y > \frac{3}{2}x + 4$ and 3y + 2x = 6.