on 4, Notes: Point-Slope Form Part 1: Recap Your 6.3 Notes....

- What kind of function best represents the path of each ditch digger?

LINEAR FUNCTION

- Every function is based on an equation that represents all of the equation's solutions.
- Describe some aspects of the first ditch digger's path.
 - · Constant rate: change in y for every two x's: m=1
 - · linear!
 - · y-intercept: (0,2) -> starting point

So one way we can write an equation of a line is by creating an equivalent equation with the slope formula.

Using the formula for slope to make the equation for a linear function

- Slope formula
- Substitute the slope of ditch digger 1
- Get this formula in function form. (Get 4, 4, by itself)
- Equation

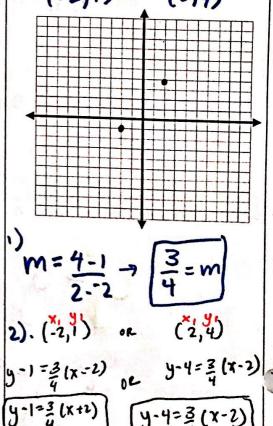
$$M = \frac{4^2 - 2}{3}$$

Part 2: Point-Slope Form

Point-Slope Form: how an equation can be written if one point on the line is known and the slope is known

 $\int_{1}^{\infty} = m\left(\frac{x_{1},y_{1}}{x_{1}}\right) = coord$

y-5 = {(x-6)}


Find the equation for the line that represents the path of the second ditch digger.

- Slope:
- Given the ordered pairs the line goes through, how many different equations can we write to represent the line that contains them? 6: one for each ordered pair.
- Points:

5, X + (V2)	Point N.	Using the slope and point, write the equation of the line in point-slope form
Day 0		
Day 1		A Transport Color Consoli
Day 2	· Iob melowa a mara a	on you signed to a Mouse me see at
Day 3		
Day 4	E WELL	
Day 5		

Write two equations in point-slope form for the graphed line.

- 1. Calculate the slope
 - a. Use the formula
 - b. Or count: start with point on left, and find the slope using rise over
- 2. Choose the coordinates of one of the points the line goes through.
- 3. Substitute the slope and the point into the point-slope form.

ow to find the equation of a line between two points: Write in Point-Slope Form

- (-6,-6), (2,-2)X1 41 12,42
- M = -2++6 = 4

Equation 1:6 x - 6 $y + 6 = \frac{1}{2}(x + 6)$

M= >

Equation 2;

- 1. Calculate the slope $m = \frac{y_2 - y_1}{x_2 - x_1}$
- 2. Choose one of the two points
- 3. Substitute the slope and the coordinates of the chosen point into point-slope form.

Equation 1:
$$y-7 = -4(x-1)$$
OR

y - 3 = -4(x - 2)

 $=\frac{1}{2}(x-2)$

Ex 3:
$$f(-1) = -4 - 7 (-1 - 4)$$

 $f(6) = 10$
 $(6) = 10$
 $(6) = 10$

$$M = \frac{10 - 4}{6 - 1} = \frac{14}{7}$$

$$y-y_1 = m(x-x_1)$$

Equation 1:
 $(-1, -4) = y+4 = 2(x+1)$
OR

1. Interpret the function form as ordered pairs (x, y) f(x) = y

Rewrite function form as two ordered pairs.

- 2. Calculate slope using the coordinates and the formula for slope.
- Choose the coordinates of one point.
- 4. Substitute the slope calculated and the coordinates of the point into point-slope form.

Ex 4:
$$f(3) = 4$$
 (3,4)
 $f(-6) = 16$ (-6,16)
 x_2 y_2

$$M = \frac{16-4}{-6-3} = \frac{12}{-9} = \frac{-4}{3}$$

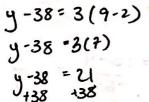
OR (-6) (b) Equation 2:

$$y - 16 = -\frac{4}{3}(x-6)$$
 $y - 16 = -\frac{4}{3}(x+6)$

 Toni is finishing a scarf at a constant rate. The table shows the number of hours Toni has spent knitting this week and the corresponding number of rows in the scarf.

 Hours	x, 2	X2 4	6
Rows of		44	50
Knitting	7'	-yz	s i

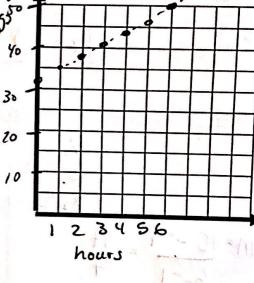
a. Identify the independent and dependent variables; identify which one is x and which one is y.



b. Find the rate of change from the table's data.

c. Write an equation in point-slope form representing the like.

$$\frac{(2,38)}{y-38=3(x-2)} = \frac{(4,44)}{y-44=3(x-4)} = \frac{(6,50)}{(5,50)}$$


d. Use the equation to find the total rows if Toni knitted for 9 hours.

y = 59 rows

e. What does the y-intercept of the function represent?

THE Y-INTERCEPT REPRESENT THE NUMBER OF ROWS TONI HAD AT THE BEGINNING OF THE WEEK.

Exit Ticket: What do you know about the graph of a line if its written in point-slope form?