Algebra 1: Unit 5 Notes Lesson 4: Arithmetic Sequences Part 1: Patterns: Revisit Warm-up: What patterns did we see... 1, 3, 5, 7, ... add by 2 1, 4, 9, 16, ... Perfect squares 1, 2, 3, 5, 8, ... and terms themselves What are some ways we can write patterns with numbers? Udd/Subtract/Multiply/Divide by a constant Give Examples: themselves could have something in common 1, 2, 4, 8, 16 1,1,2,4,3,9,4,16 -27, 9, -3, 1, - 2 ... Given the rule, write the first three terms of each sequence. Assume that the domain of the function is the set of consecutive integers starting with 1. $$f(x) = \left(x+1\right)^3$$ $$f(x) = \frac{3x-1}{x+2}$$ $$f(2) = 94$$ What about this sequence: 1, 4, 7, 10,... IST TERM Graph it to see a pattern TORMS IND Sequence: A LIST OF NUMBERS THAT Form A PATTERN Term: A NUMBER IN THE SEQUENCE 18-14-1- 14 (FA)+1 What is the 3rd term of the sequence? What is the 10th term of the sequence? What is the 100th term of the sequence? (YIKES!!) Any ideas for finding the 100th term?? ## Algebra 1: Unit 5 Notes http://www.shmoop.com/video/arithmetic-sequences/ Part 2: Arithmetic Sequence **Arithmetic Sequence:** A pattern of terms that differ by the same number d, called the difference. One is Common added to a number (the number can be <u>+</u> or -How many eyebrow hairs will Irving lose on Day 10? an= a, + (n-1) d 1=-4 N=10 fristday: lock 4=-4 010=4+(10-1)(4) =-4+(9)(-4) **Explicit rule:** =-44-36 Now can you find the 100th term from the sequence 1, 4, 7, 10, ... a,=17 an=a,+(n-1)d ano = 298 d=3) $a_{100}=1+(100-1)^3$ n=100 = 1+297 ### Term $(a_1 \text{ and } a_n)$: al: First term an value of nth ferm number we want to find ### Common difference: d= difference between terms an=a,+(n-1)d ### **Recursive rule:** Part 3 Patterns and Sequences Examples - Kreim 1. Given the table - a. What is the common difference? b. Write the explicit rule: $Q_n = Q_1 + (n-1) d$ $$a_n = -4 + (n-1) + -4 + 4n - 4$$ $0 = 4n - 8$ c. Write the recursive rule: b. Write the explicit rule: $$a_n = a_1 + (n-1)d$$ $$a_n = 2 + (n-1)(-4) \text{ or } = 2 + -4 + 4$$ $$a_n = -4n + 6$$ c. Write the recursive rule: d. Find the 8th term. a=-4(8-1)4 =-4+ (7)(4) ax = 24 d. Find the 24th term. 1 azy = -90 azu = 2+ (24-1)(-4) = 2 + (23)(-4) ## Algebra 1: Unit 5 Notes - 3. Consider the sequence –5, –2, 1, 4, ... - a. What is the common difference? b. Write the explicit rule: $$\frac{Q_n = Q_1 + (n-1)d}{Q_n = -5 + (n-1)3} = -5 + 3n-3$$ $$Q_n = 3n-8$$ - c. Write the recursive rule: - d. Find the 9th term. a= 19 - 4. Consider the sequence −1 -3 -3 -7 - a. What is the common difference? b. Write the explicit rule: $a_n = a_1 + (n-1)d$ $\alpha_n = -1 + (n-1) - 3$ c. Write the recursive rule d. Find the 35th term. $$n=35$$ $a_n = -1 + (n-1) - 3$ $a_n = -1 + (35-1) - 3$ $a_n = -1 + (34) - 3$ $a_n = -1 + (34) - 3$ $a_n = -1 - 102$ $a_n = -1 - 102$ ## Ticket out the door: Create your own arithmetic sequence. What makes it an arithmetic sequence?