Algebra 1: Unit 5 Notes

Lesson 4: Arithmetic Sequences

Part 1: Patterns: Revisit Warm-up: What patterns did we see... 1, 3, 5, 7, ...

add by 2

1, 4, 9, 16, ...

Perfect squares

1, 2, 3, 5, 8, ... and terms themselves

What are some ways we can write patterns with numbers?

Udd/Subtract/Multiply/Divide by a constant Give Examples: themselves could have something in common

1, 2, 4, 8, 16 1,1,2,4,3,9,4,16

-27, 9, -3, 1, - 2 ...

Given the rule, write the first three terms of each sequence. Assume that the domain of the function is the set of consecutive integers starting with 1.

$$f(x) = \left(x+1\right)^3$$

$$f(x) = \frac{3x-1}{x+2}$$

$$f(2) = 94$$

What about this sequence: 1, 4, 7, 10,...

IST TERM Graph it to see a pattern

TORMS IND

Sequence:

A LIST OF NUMBERS THAT Form A PATTERN

Term:

A NUMBER IN THE SEQUENCE

18-14-1- 14 (FA)+1

What is the 3rd term of the sequence?

What is the 10th term of the sequence?

What is the 100th term of the sequence? (YIKES!!) Any ideas for finding the 100th term??

Algebra 1: Unit 5 Notes http://www.shmoop.com/video/arithmetic-sequences/ Part 2: Arithmetic Sequence **Arithmetic Sequence:** A pattern of terms that differ by the same number d, called the difference. One is Common added to a number (the number can be <u>+</u> or -How many eyebrow hairs will Irving lose on Day 10? an= a, + (n-1) d 1=-4 N=10 fristday: lock 4=-4 010=4+(10-1)(4) =-4+(9)(-4) **Explicit rule:** =-44-36 Now can you find the 100th term from the sequence 1, 4, 7, 10, ... a,=17 an=a,+(n-1)d ano = 298

d=3) $a_{100}=1+(100-1)^3$ n=100 = 1+297

Term $(a_1 \text{ and } a_n)$:

al: First term

an value of nth ferm

number we want to find

Common difference:

d= difference between terms

an=a,+(n-1)d

Recursive rule:

Part 3 Patterns and Sequences Examples

- Kreim 1. Given the table
- a. What is the common difference?

b. Write the explicit rule: $Q_n = Q_1 + (n-1) d$

$$a_n = -4 + (n-1) + -4 + 4n - 4$$
 $0 = 4n - 8$

c. Write the recursive rule:

b. Write the explicit rule:

$$a_n = a_1 + (n-1)d$$

$$a_n = 2 + (n-1)(-4) \text{ or } = 2 + -4 + 4$$

$$a_n = -4n + 6$$

c. Write the recursive rule:

d. Find the 8th term. a=-4(8-1)4 =-4+ (7)(4)

ax = 24

d. Find the 24th term. 1 azy = -90 azu = 2+ (24-1)(-4)

= 2 + (23)(-4)

Algebra 1: Unit 5 Notes

- 3. Consider the sequence –5, –2, 1, 4, ...
- a. What is the common difference?

b. Write the explicit rule:

$$\frac{Q_n = Q_1 + (n-1)d}{Q_n = -5 + (n-1)3} = -5 + 3n-3$$

$$Q_n = 3n-8$$

- c. Write the recursive rule:
- d. Find the 9th term. a= 19

- 4. Consider the sequence −1 -3 -3 -7
 - a. What is the common difference?

b. Write the explicit rule: $a_n = a_1 + (n-1)d$ $\alpha_n = -1 + (n-1) - 3$ c. Write the recursive rule

d. Find the 35th term.

$$n=35$$
 $a_n = -1 + (n-1) - 3$
 $a_n = -1 + (35-1) - 3$
 $a_n = -1 + (34) - 3$
 $a_n = -1 + (34) - 3$
 $a_n = -1 - 102$
 $a_n = -1 - 102$

Ticket out the door:

Create your own arithmetic sequence. What makes it an arithmetic sequence?