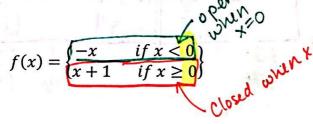
Ex 2: Find
$$f(-2)$$
, $f(-0.4)$, $f(3.7)$, and $f(5)$ for $f(x) = \begin{cases} -x & \text{if } x < 2 \\ 2x + 3 & \text{if } 2 \le x < 4 \end{cases}$

x	Based on its domain, which rule will it follow	Evaluate $f(x)$	f(x) =
-2	} f(x)=-X	f(-2) = -2	2
-0.4		F(-0.4) =0.4	0.4
3.7	f(x) = 2x + 3	f(3.7) = 2(3.7) + 3	10.4
5	$\frac{3}{3}f(x)=x^2$	$f(5) = 5^2$	25

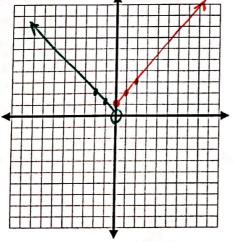
Part 3: Graphing piecewise functions

Likewise, by paying attention to the domain, the graphs of piecewise functions can also be plotted according to the different functions that define them.

Ex 3:



x	Evaluate $f(x)$	f(x)	Ordered Pair
-2	f(-2)=2	2	(-2, 2)
-1	f(-1) = 1]	(-1,1)
	f(0) = - (0)	0	(0,0)08
<u>o</u>	f(0)=0+1	-1	(0,1)
1	f(1)=1+1	2	(1,2)
2	f(2) = 2+1	3	(1,3)



How to graph a piecewise function

- Make a table of values. Make sure the boundary points are evaluated for each function.
- Evaluate the piecewise function for each input; record as an ordered pair.
- Plot the points on a coordinate plane. Connect the values from the same functions.
- 4. Between the different functions, be very aware of the domain. If the inequality sign is a greater than or less than and the point plotted is an end point, that point is open. If the inequality sign is a greater than or equal to (or less than or equal to), and it's on an end point, that end point is closed

