Part 2

The first year a soccer camp was offered, 44 girls and 56 boys enrolled. From then on, each year 5 more girls enrolled and 4 boys enrolled. Let t represent the number of years since the camp opened.

Write a rule for the number of girls enrolled as a function of time:

$$g(t) = 44+5$$

Write a rule for the number of boys enrolled as a function of time:

$$b(t) = 50+46$$

$$T(t) = g(t) + 4b(t) = 44+5t+5b+4t = 100+9t$$

Just like numbers can be added/subtracted/multiplied/divided, so can functions.

A new function is created.

Given: f(x) = 3x - 1, g(x) = -2x - 2, find...

b.
$$h(x) = f(x) - g(x)$$

c.
$$h(x) = f(x) \cdot g(x)$$

Part 1: Introduction

- For each stretch, determine the distance traveled. Then assess how many total miles you traveled during each stretch.
- 2. Label your dependent and independent variables on the coordinate plane.
 - Independent variable: Time (hars)
 - · Dependent variable: Distance (miles)
- 3. Using the given the information from your table, graph the total distance traveled after each leg.

4. Why doesn't this look like a continuous pattern?

Because the traffic prevented us from maring at a constant rate.

For the Thanksgiving holiday, you are driving to the Los Angeles area. The traffic was not pretty. Here's how it broke down:

- Stretch 1: For the first two hours from here to Santa Barbara, the traffic was fine. You drove 70 miles/hour.
- Stretch 2: Once you hit Santa Barbara, however, the traffic was terrible. You averaged 10 miles/hour for the next hour.
 - Stretch 3: The next stretch from Santa Barbara to Ventura was an improvement, but not loads better. You averaged 20 miles/hour for the next half hour.
 - Stretch 4: Finally, in Ventura you jumped on the 126 to the 5 and then to the 210, and were able to average 60 miles/hour for the next hour and a half.
 - You pulled up to Grandma's.

M.P. h hours				
. X		Total		
× (Rate Time Distance	miles traveled from home		
Stretch 1	20 0 2 = 140	140		
Stretch 2	10 . 1 = 10	150		
Stretch 3	20 • 0.5= 10	160		
Stretch 4	60 -1,5+90	250		
		4		

Algebra 1: Unit 5 Notes

Part 2: Evaluating Piecewise Functions

Because there are different rules for different parts of the domain, this function is called

A piecewise function

- Each piece of the function has its own rule, depending on its domain.
- In our trip to Grandma's example....

	Write the expression you used to find the distance traveled for this stretch. Use x for time.	For what values in the domain was this expression used in your graph?
Stretch 1	$f(x) = 70 \cdot \chi$	$0 \le x \le 2$
Stretch 2	$f(x) = \int \int \chi$	2 < x ≤ 3
Stretch 3	$f(x) = 20 \times$	3 < x ≤ 3.5
Stretch 4	$f(x) = \langle g(x) \times \rangle$	$3.5 < x \le 5$

• Formally, this is expressed like so, since all three parts are used to build the piecewise function that represents this situation:

$$f(x) = \begin{cases} 70\% & if & 0 \le x \le 2\\ 10\% & if & 2 < x \le 3\\ 20\% & if & 3 < x \le 3.5\\ 60\% & if & 3.5 < x \le 5 \end{cases}$$

How to evaluate piecewise functions for the given values

Ex 1:

Find
$$f(-3)$$
, $f(-0.2)$, $f(0)$, and $f(2)$ for $f(x) = -\frac{1}{2}$

$$f(x) = \begin{cases} -x & \text{if } x < 0 \\ x + 1 & \text{if } x \ge 0 \end{cases}$$

	Based on its domain, which rule will it	Evaluate that value in the function.
f(-3)	follow?	f(-3) =3 = 3
f(-0.2)	f(x)=-X	f(0.2)=-0.2=0.2
f(0)	f(x) = x+1	f(0) = 0+1 = 1
f(2)	F(x)=x+1	f(2)=2+1=3

- For each evaluation, it needs to be determined which function it specifically follows.
- Look at the x-value in the parentheses to determine which rule it follows.
- 3. Then see which domain it fits into for the piecewise function.
- 4. Evaluate for the designated function.

Ex 2: Find
$$f(-2)$$
, $f(-0.4)$, $f(3.7)$, and $f(5)$ for $f(x) = \begin{cases} -x & \text{if } x < 2 \\ 2x + 3 & \text{if } 2 \le x < 4 \end{cases}$

x	Based on its domain, which rule will it follow	Evaluate $f(x)$	f(x) =
-2	3 f(x)=-X	F(-2) =2	2
-0.4	(())	F(-0.4) =0.4	0.4
3.7	1 f(x)=2x+3	f(3.7) = 2(3.7) + 3	10.4
5	7 f(x) = x2	$f(5) = 5^2$	25

Part 3: Graphing piecewise functions

Likewise, by paying attention to the domain, the graphs of piecewise functions can also be plotted according to the different functions that define them.

$$f(x) = \begin{cases} -x & \text{if } x < 0 \\ x + 1 & \text{if } x \ge 0 \end{cases}$$

x	Evaluate $f(x)$	f(x)	Ordered Pair
-2	f(-2)=2	2	(-2, 2)
-1	f(-1) =1	1	(-1,1)
<u>o</u>			
	f(0)=0+1	-1	(1,0)
1	f(1)=1+1	2	(1,2)
2	F(2) = 2+1	3	(1,3)

How to graph a piecewise function

- 1. Make a table of values. Make sure the boundary points are evaluated for each function.
- 2. Evaluate the piecewise function for each input; record as an ordered pair.
- 3. Plot the points on a coordinate plane. Connect the values from the same functions.
- 4. Between the different functions, be very aware of the domain. If the inequality sign is a greater than or less than and the point plotted is an end point, that point is open. If the inequality sign is a greater than or equal to (or less than or equal to), and it's on an end point, that end point is closed