Unit 4, lesson 4 Notes: Factoring Special Products

x - 36

Factored form: $(\chi - \iota)(\chi + \iota)$

What is the total area of the unshaded regions?

$$x^{2}-36$$

What binomials made these areas?

Special Products: Some factorable quadratics have such a noticeable pattern in the product that the factored form is named and considered "special".

Special Product #1:

$$a^2 - b^2$$

How do you determine if you have a difference of two squares? - PERFECT SQUARE

· PERFECT SQUARE

See Factoring Packet. Then do Examples: Factor..

	a.	m-	- 49	-
(1		7.1	*
(m+7	-)(M	ーナノ	

1	b. $25 - 4x^2$
1	
	(5-2x)(5+2x)

Solve by Factoring nomix

d.
$$m^2 - 36 = 0$$

$$(w^{2}-3)(w^{2}+3)=0$$

$$0^{2}-3=0$$
 $0^{2}+3=0$ $0^{2}+3=0$ $0^{2}+3=0$ $0^{2}+3=0$ $0^{2}+3=0$

f.
$$225a^{2}-49=0$$

 $(15a-7)(15a+7)=0$
 $15a-7=0$ $15a+7=0$
 $15a-7=0$ $15a+7=0$
 $15a-7=0$ $15a-7=0$

