Solve the system of linear inequalities by graphing. Identify three solutions and one non-solution.

$$1) \begin{cases} y < -3x + 4 \\ y > 2x - 2 \end{cases}$$

$$\begin{cases} y < \frac{4}{3}x + 1 \\ y \ge -\frac{2}{3}x + 7 \end{cases}$$

Identify three solutions:

Identify three solutions:

Identify one non-solution:

Identify one non-solution:

$$3) \begin{cases} y \le \frac{1}{4}x + 2 \\ y > 1 \end{cases}$$

$$\begin{cases} 2y > x + 4 \\ y \le x \end{cases}$$

Identify three solutions:

Identify three solutions:

Identify one non-solution:

Identify one non-solution:

$$5) \begin{cases} -y > x - 3 \\ v + 4x < 6 \end{cases}$$

 $\begin{cases} 3y - x > 6 \\ 2y < 2x \end{cases}$

Identify three solutions:

Identify one non-solution:

Identify three solutions:

Identify one non-solution:

Write the system of linear inequalities shown below. Identify three solutions and one non-solution.

7)

8)

Write the system shown above:

Write the system shown above:

Identify three solutions:

Identify three solutions:

Identify one non-solution:

Identify one non-solution:

Solve the real-world situation by graphing linear inequalities.

9) For the bake sale on Saturday Tillie is making cookies and brownies. She is selling her cookies for \$1 each and brownies for \$2 each. She wants to make at least \$30, but doesn't want to make more than 4 dozen cookies/cupcakes combined. (*Hint – how many are in a dozen?)

- a) Identify your variables.
- b) Write the system of linear inequalities that can be used to represent this situation.

c) Graph the system of linear inequalities. Label your x- and y-axis.

d) Describe and list five possible combinations of cookies and brownies that Tillie could make.