Find all the parts and graph the quadratic function in vertex form. Use the table provided as needed.

1. Graph: $g(x) = (x+1)^2 - 4$

Direction of opening:

X	g(x)

Vertex:

Maximum/Minimum:

Axis of Symmetry:

y-intercept:

x-intercept(s):

Domain:

Range:

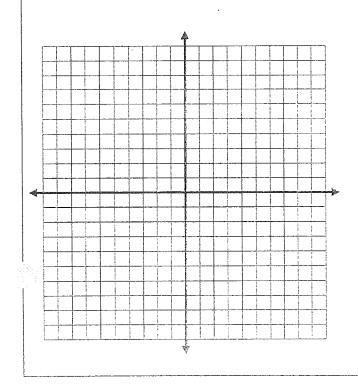
2.	Graph:	f(x) =	=-2(x)	$-3)^{2}$	-2
•		1 ()	(-,	

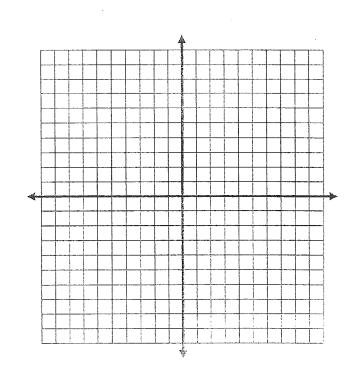
Direction of opening:

X	f(x)

Vertex:

Maximum/Minimum:


Axis of Symmetry:


y-intercept:

x-intercept(s):

Domain:

Range:

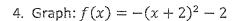
3. Graph: $g(x) = 2(x-1)^2 - 2$

Direction of opening:

X	g(x)
<u>. </u>	

Vertex:

Maximum/Minimum:


Axis of Symmetry:

y-intercept:

x-intercept(s):

Domain:

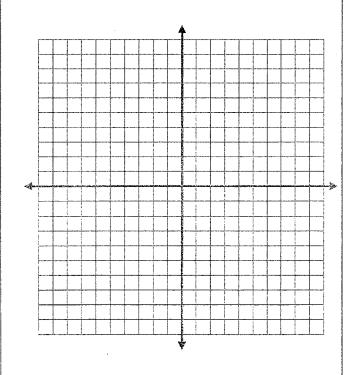
Range:

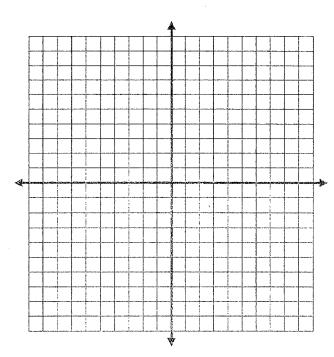
Direction of opening:

X	f(x)

Vertex:

Maximum/Minimum:


Axis of Symmetry:


y-intercept:

x-intercept(s):

Domain:

Range:

Write an equation for the function represented by the graph of a parabola that is the translation of $f(x) = x^2$

- 5. The graph is translated 8 units to the left and 3 units down.
- 6. The graph is translated 4 units to the right and 8 units up.