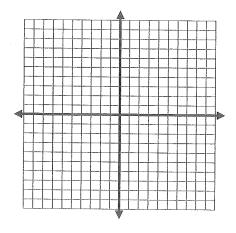
Part 1: Revisit  $f(x) = ax^2$ 

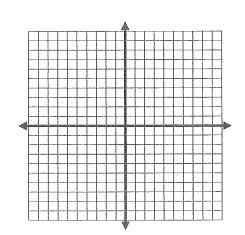
What do we know about "a"

How do we know if the parabola has a maximum or a minimum?

$$f(x) = ax^2 + bx + c$$

Where have you seen this function before?


Any ideas of what "b" and "c" might do to change the graph?


Let's look at a problem with only "b" and the shape of our parabola looking like shots from our Basketball Task. ( $a = \underline{\hspace{1cm}}$ )

| X                  |  |  |  |
|--------------------|--|--|--|
| $f(x) = -x^2 + 4x$ |  |  |  |

Let's look at a problem with only "c" and the shape of our parabola looking like shots from our Basketball Task. (a =\_\_\_\_)

| Х                 |  | ! |  |
|-------------------|--|---|--|
| $f(x) = -x^2 + 4$ |  | - |  |



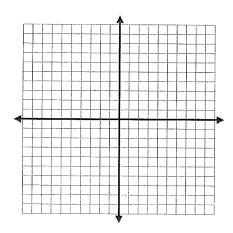


What findings do you see:

Lets look more at "c"

| X                     | -2 | -1 | 0 | 1 | -2 |
|-----------------------|----|----|---|---|----|
| $f(x) = x^2 + 4x + 8$ |    |    |   |   |    |

| X                     | -2 | -1 | 0 | 1 | -2 |
|-----------------------|----|----|---|---|----|
| $f(x) - x^2 - 6x - 7$ |    |    |   |   |    |


What does the "c" stand for:

Thinking back to our Basketball Task what might "c" be in those problems?

Basketball Task Day 2 Part 1 – see Task Handout and transparency graph paper

Part 2: Exploring the graph of a Quadratic Function in Standard form:

$$f(x) = x^2 + 4x - 5$$



У

## <u>Steps to find Parts of a Quadratic</u> <u>Function $f(x) = ax^2 + bx + c$ :</u>

1.

2.

3.

4.

5.

6.

Parts of a Quadratic Function:

Direction of opening:

Vertex:

Maximum/Minimum:

Axis of Symmetry:

y-intercept:

x-intercept(s):

Domain:

Range:

Examples: Find all the parts and graph the quadratic function in standard form.

Ex 1: 
$$f(x) = -\frac{1}{2}x^2 + 2x + 6$$

$$f(x) = 3x^2 + 6x + 1$$

| x y |     |               |  |
|-----|-----|---------------|--|
|     |     |               |  |
|     |     |               |  |
|     |     |               |  |
|     | 01  |               |  |
|     | 200 |               |  |
|     | 4   | 1 1 1 3 1 1 1 |  |
|     |     |               |  |
|     |     |               |  |
|     |     |               |  |
|     |     |               |  |
|     |     |               |  |
|     |     |               |  |

| X | ٧ |   |          | ~~-  |      |   |  |            |   | L | <br>       |      | <br>ļ |          |         | Ì |
|---|---|---|----------|------|------|---|--|------------|---|---|------------|------|-------|----------|---------|---|
|   |   |   | _        | <br> |      |   |  |            |   |   |            |      | ļ     |          |         |   |
|   |   |   |          |      |      |   |  |            |   | - |            |      |       |          |         |   |
|   |   |   |          |      |      |   |  |            |   |   |            |      | <br>- |          |         |   |
|   |   |   |          |      |      |   |  |            |   | - |            |      |       |          |         |   |
|   |   | 4 | passions |      | <br> |   |  | ********** | - |   |            |      |       | wildelex | onkaper |   |
|   |   |   |          | <br> | <br> |   |  |            |   |   |            |      |       |          |         |   |
|   |   |   |          |      |      |   |  |            |   |   | I h h safe | <br> |       | <br>     |         |   |
|   |   |   |          | _    |      |   |  | _          |   |   |            |      |       |          |         |   |
|   |   |   |          |      | <br> | _ |  |            |   |   |            | <br> |       | <br>     |         |   |

## Parts of a Quadratic Function:

Direction of opening:

Vertex:

Maximum/Minimum:

Axis of Symmetry:

y-intercept:

x-intercept(s):

x-intercept(s):

Domain:

Range:

y-intercept:

Parts of a Quadratic Function:

Direction of opening:

Maximum/Minimum:

Axis of Symmetry:

Domain:

Vertex:

Range:

## Exploring the equation of a quadratic function in standard form.

Tim hits a softball. The function  $h(x) = -14t^2 + 56t + 3$  describes the height (in feet) of the softball, and t is the time (in seconds).

a) Draw a rough graph of what this graph might look like.

- b) Does the graph have a maximum or minimum? What is it? Explain in the context of the problem.
- c) Evaluate h(0). What does this value tell you? Explain in the context of the problem.

d) How long is the ball in the air?

## Ticket out the door:

In the last problem how would have the function changed had Tim hit a line drive that the  $2^{nd}$  baseman caught?